Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hexa- μ_2 -acetato-triagua- μ_3 -oxidotriiron(III) nitrate acetic acid solvate

Sumei Yao,^a Jianhua Liu^b and Qiuxia Han^{b*}

^aMedical College of Henan University, Henan University, Kaifeng 475004, People's Republic of China, and ^bBasic Experiment Teaching Center, Henan University, Kaifeng 475004, People's Republic of China Correspondence e-mail: hdhqx@henu.edu.cn

Received 28 May 2008; accepted 29 June 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.044; wR factor = 0.106; data-to-parameter ratio = 13.1.

The asymmetric unit of the title compound, $[Fe_3(CH_3COO)_6-$ O(H₂O)₃]NO₃·CH₃COOH, consists of a hexa-µ₂-acetatotriaqua- μ_3 -oxo-triiron(III) macrocation, a nitrate ion and an acetic acid solvent molecule. In the cation, each Fe³⁺ ion is coordinated by four carboxylate O atoms, one central bridged O atom and one water molecule, resulting in distorted FeO_6 octahedra. A network of $O-H \cdots O$ hydrogen bonds helps to establish the packing.

Related literature

For related literature, see: Fujihara et al. (1998); Ren et al. (2004); Thirumurugan & Natarajan (2004); Vrubel et al. (2006); Zhang et al. (2005).

Experimental

Crystal data [Fe₃(C₂H₃O₂)₆O(H₂O)₃]NO₃-- $C_2H_4O_2$ $M_r = 713.92$ Monoclinic, $P2_1/c$ a = 11.835 (3) Å b = 14.755 (4) Å c = 15.250 (4) Å

 $\beta = 90.851 \ (5)^{\circ}$ $V = 2662.8 (12) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 1.71 \text{ mm}^-$ T = 296 (2) K $0.18 \times 0.13 \times 0.10 \text{ mm}$ $R_{\rm int} = 0.054$

14072 measured reflections

4953 independent reflections

3355 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD

diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\rm min} = 0.750, T_{\rm max} = 0.848$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$wR(F^2) = 0.106$	independent and constrained
S = 1.00	refinement
4953 reflections	$\Delta \rho_{\rm max} = 0.51 \text{ e } \text{\AA}^{-3}$
378 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
9 restraints	

Table 1

Selected bond lengths (Å).

Fe1-O13	1.897 (2)	Fe2-O2	2.030 (2)
Fe1-O1	1.987 (2)	Fe2-O4	2.030 (2)
Fe1-O10	1.995 (2)	Fe2-O2W	2.126 (3)
Fe1-O12	2.005 (3)	Fe3-O13	1.916 (2)
Fe1-O3	2.063 (2)	Fe3-O11	2.011 (3)
Fe1-O1W	2.104 (2)	Fe3-O6	2.013 (2)
Fe2-O13	1.900 (2)	Fe3-O8	2.013 (2)
Fe2-O5	1.985 (2)	Fe3-O9	2.017 (2)
Fe2-O7	2.021 (2)	Fe3–O3W	2.048 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 014 - \text{H14} \cdots 017^{i} \\ 03W - \text{H3}AW \cdots 015^{ii} \\ 01W - \text{H1}AW \cdots 018^{iii} \\ 03W - \text{H3}BW \cdots 017^{iv} \\ 02W - \text{H2}AW \cdots 015^{v} \\ 02W - \text{H2}AW \cdots 03^{vi} \end{array}$	0.82 0.816 (9) 0.815 (9) 0.818 (9) 0.816 (9) 0.814 (9)	1.82 1.894 (9) 2.008 (10) 1.938 (13) 2.28 (2) 2.188 (12)	2.642 (4) 2.697 (4) 2.821 (4) 2.742 (4) 2.904 (4) 2.948 (3)	178 168 (2) 176 (2) 167 (3) 134 (2)
			= (-)	(-)

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x - 1, y, z; (iii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (iv) x, y + 1, z; (v) $x - 1, -y + \frac{3}{2}, z - \frac{1}{2}$; (vi) -x + 1, -y + 2, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement and data reduction: SAINT-Plus (Bruker, 2001); structure solution: SHELXS97 (Sheldrick, 2008); structure refinement: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2740).

References

Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Fujihara, T., Aonahata, J., Kumakura, S., Nagasawa, A., Murakami, K. & Ito, T. (1998). Inorg. Chem. 37, 3779-3784.

- Ren, X. M., Okudera, H. & Kremer, R. K. (2004). Acta Cryst. E60, m14-m16. Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thirumurugan, A. & Natarajan, S. (2004). Dalton Trans. pp. 2923-2928.
- Vrubel, H., Hasegawa, T., Oliverira, E. & Nunes, F. S. (2006). Inorg. Chem. Commun. 9, 208-211.
- Zhang, H. T., Li, Y. Z., Wang, H. Q., Nfor, E. N. & You, X. Z. (2005). CrystEngComm, 7, 578-585.

supplementary materials

Acta Cryst. (2008). E64, m989 [doi:10.1107/S1600536808019806]

Hexa- μ_2 -acetato-triaqua- μ_3 -oxido-triiron(III) nitrate acetic acid solvate

S. Yao, J. Liu and Q. Han

Comment

Transiton-metal coordination complexes based on carboxylates have been attracting chemist's interests and constitutes one of the widest families of research (Thirumurugan & Natarajan, 2004). During the past years, lots of novel carboxylates compounds have been reported (Zhang *et al.*, 2005), in which carboxlate-supported $Cr_3(/m_3-O)$ (Fujihara *et al.*, 1998) and Fe₃(/m₃-O) core (Ren *et al.*, 2004; Vrubel *et al.*, 2006), present two large kinds of widely investigated transition-metal complexes. Herein, we report the title compound (I).

The title compound, (I), presents a macrocation of $[Fe_3O(CH_3COO)_6(H_2O)_3]^+$, in which Fe^{3+} is coordinated by four oxygen atoms from four carboxylates of four acetate anions, one central bridged oxygen atom, and one water molecule. The environment of all the Fe ions are distorted octahedral geometry (Fig. 1). The three Fe atoms approximatively reside in an equilateral triangle with an oxide ion in the center [Fe₃O]. The Fe—O distances range from 1.897 (2) to 2.126 (3) Å (Table 1).

In the crystal, the components are linked by O—H···O hydrogen bonds generating a three-dimensional framework (Fig. 2 and Table 2).

Experimental

 $Fe(NO_3)_3.9H_2O$ (1 mmol, 0.404 g) was suspended in 5 ml water and 3 ml (1 mol/*L*) NaOH solution was added dropwise to produce a brown precipitate, then 25 ml acetic acid were added to the mixture. It was stirred under reflux for 3 h. The solution was filtered, and the filtrate was kept at the room temperature. After one weeks, xxx blocks of (I) were obtained.

Refinement

H atoms were treated as riding, with C—H distances in the range of 0.93–0.98 Å and O—H distances of 0.82 Å, and were refined as riding with $U_{iso}(H)=1.2U_{eq}(C_{methylene})$ and $C_{methylidyne})$ and $U_{iso}(H)=1.5U_{eq}(O \text{ or } C_{methyl})$.

Figures

Fig. 1. The molecular structure of (I), with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Fig. 2. Three-dimensional structure of (I), with hydrogen bonds shown as dashed lines.

Hexa-µ2-acetato-triaqua-µ3-oxido-triiron(III) nitrate acetic acid solvate

Crystal data

 $[Fe_3(C_2H_3O_2)_6O(H_2O)_3]NO_3 \cdot C_2H_4O_2$ $M_r = 713.92$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.835 (3) Å *b* = 14.755 (4) Å c = 15.250 (4) Å $\beta = 90.851 (5)^{\circ}$ $V = 2662.8 (12) \text{ Å}^3$ Z = 4

$F_{000} = 1460$ $D_{\rm x} = 1.781 {\rm Mg m}^{-3}$ Mo Kα radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2092 reflections $\theta = 2.2 - 23.2^{\circ}$ $\mu = 1.71 \text{ mm}^{-1}$ T = 296 (2) KBlock, yellow $0.18 \times 0.13 \times 0.10 \text{ mm}$

Data collection

Bruker SMART CCD diffractometer	4953 independent reflections
Radiation source: fine-focus sealed tube	3355 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.054$
T = 296(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 11$

(SADABS; Sheldrick, 2001)	
$T_{\min} = 0.750, \ T_{\max} = 0.848$	$k = -17 \rightarrow 17$
14072 measured reflections	$l = -18 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.106$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.048P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.00	$(\Delta/\sigma)_{\rm max} = 0.001$
4953 reflections	$\Delta \rho_{max} = 0.51 \text{ e} \text{ Å}^{-3}$
378 parameters	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$
9 restraints	Extinction correction: none
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe1	0.40305 (4)	0.89656 (3)	0.62790 (3)	0.02692 (12)
Fe2	0.17864 (4)	0.76827 (3)	0.59152 (3)	0.02751 (12)
Fe3	0.16879 (4)	0.93399 (3)	0.73634 (3)	0.02779 (13)
O1W	0.5730 (2)	0.92274 (16)	0.59831 (17)	0.0390 (7)
O2W	0.1067 (2)	0.66185 (17)	0.51505 (18)	0.0536 (8)
O3W	0.0853 (2)	1.01043 (16)	0.82684 (16)	0.0414 (7)
01	0.4549 (2)	0.76906 (16)	0.61642 (19)	0.0505 (8)
O2	0.30533 (19)	0.67883 (15)	0.61664 (16)	0.0373 (6)
O3	0.3729 (2)	0.90801 (17)	0.49476 (15)	0.0433 (7)
O4	0.2469 (2)	0.79746 (15)	0.47350 (15)	0.0375 (6)
O5	0.0995 (2)	0.71685 (15)	0.69403 (15)	0.0379 (6)
O6	0.0942 (2)	0.82725 (15)	0.79378 (16)	0.0461 (7)
07	0.0395 (2)	0.84025 (16)	0.55730 (15)	0.0387 (7)

supplementary materials

O8	0.03183 (19)	0.94965 (16)	0.65798 (16)	0.0406 (7)
O9	0.2290 (2)	1.05548 (15)	0.69826 (17)	0.0430 (7)
O10	0.38902 (19)	1.03126 (16)	0.62901 (17)	0.0456 (7)
011	0.2928 (2)	0.92041 (18)	0.82695 (16)	0.0492 (8)
O12	0.4514 (2)	0.89345 (18)	0.75438 (16)	0.0481 (7)
O13	0.25047 (17)	0.86634 (13)	0.65078 (14)	0.0254 (5)
O17	0.1754 (3)	0.16154 (19)	0.9058 (2)	0.0782 (11)
O18	0.2920 (3)	0.26869 (19)	0.9325 (2)	0.0674 (9)
O14	0.7459 (2)	0.9001 (2)	0.9425 (2)	0.0738 (10)
H14	0.7698	0.8798	0.9893	0.111*
015	0.9248 (2)	0.9381 (2)	0.92925 (19)	0.0637 (9)
C1	0.4856 (3)	0.6134 (2)	0.6411 (3)	0.0472 (11)
H1A	0.4414	0.5590	0.6445	0.071*
H1B	0.5258	0.6224	0.6956	0.071*
H1C	0.5386	0.6080	0.5943	0.071*
C2	0.4094 (3)	0.6923 (2)	0.6240(2)	0.0302 (8)
C3	0.3290 (3)	0.8632 (3)	0.3488 (2)	0.0479 (11)
H3A	0.3837	0.9093	0.3361	0.072*
H3B	0.2576	0.8792	0.3225	0.072*
H3C	0.3539	0.8063	0.3256	0.072*
C4	0.3164 (3)	0.8553 (2)	0.4464 (2)	0.0305 (9)
C5	0.0056 (3)	0.6886 (3)	0.8275 (2)	0.0458 (11)
H5A	-0.0075	0.6307	0.8004	0.069*
H5B	-0.0655	0.7167	0.8400	0.069*
H5C	0.0478	0.6803	0.8811	0.069*
C6	0.0711 (3)	0 7479 (2)	0 7666 (2)	0.0317 (9)
C7	-0.1126(3)	0.9443(3)	0.5496 (3)	0.0476 (11)
H7A	-0.1380	0.9960	0.5820	0.071*
H7B	-0.1696	0.8980	0.5504	0.071*
H7C	-0.0987	0.9618	0 4901	0.071*
C8	-0.0058(3)	0.9087(2)	0.5905(2)	0.071 0.0317(9)
C9	0.3287(3)	1 1823(2)	0.5905(2)	0.0517(9)
Н9А	0.3975	1 1935	0.6147	0.077*
H9R	0.3322	1 2118	0.7016	0.077*
H9C	0.2659	1.2110	0.6120	0.077*
C10	0.2037	1.2030 1.0824(2)	0.6584(2)	0.0303 (9)
C10	0.5142(5) 0.4539(3)	0.8788(3)	0.0384(2) 0.0092(2)	0.0303(7)
H11A	0.4025	0.8865	0.9567	0.073*
H11R	0.4023	0.0103	0.9307	0.073*
HIIC	0.5108	0.9173	0.9108	0.073*
C12	0.3942(3)	0.8174	0.9004 0.8241 (2)	0.075 0.0324(9)
016	0.3942(3) 0.1840(3)	0.3775(2)	0.8241(2)	0.0324(7)
N1	0.1840(3) 0.2187(3)	0.2743(2) 0.2358(2)	0.8103(2)	0.0602(11) 0.0534(10)
C13	0.2187(3) 0.7984(4)	0.2338(2) 0.9702(3)	0.8850(2)	0.0554(10) 0.0624(13)
H13A	0.7694	1.0306	0.8163	0.002+(13)
H12R	0.7074	0.0318	0.7851	0.024
H13C	0.7413	0.9310	0.7031	0.094
C14	0.005/	0.3707	0.7744	0.094
U14	0.0301(3)	0.9333(3)	0.0900(3)	0.0470(11)
пјА	0.0417 (12)	0.9921 (13)	0.0037(11)	0.003 (10)*

H1AW	0.6123 (14)	0.8779 (8)	0.59	21 (16)	0.048 (12)*	
H3BW	0.1149 (16)	1.0579 (9)	0.84	27 (17)	0.085 (16)*	
H2AW	0.0434 (9)	0.6407 (19)	0.52	.02 (14)	0.106 (19)*	
H2BW	0.122 (2)	0.667 (3)	0.46	530 (7)	0.16 (3)*	
H1BW	0.584 (3)	0.9594 (9)	0.55	94 (11)	0.079 (16)*	
Atomic displa	cement parameters	(\mathring{A}^2)				
	U^{11}	L) ²²	LI ³³	<i>U</i> ¹²	U^{13}	L/ ²³
Fe1	0 0246 (3)	0 0245 (2)	0 0317 (3)	-0.0017(2)	0 0026 (2)	-0.0008(2)
Fe2	0.0289(3)	0.0224(2)	0.0313(3)	-0.0028(2)	0.0011(2)	0.0004(2)
Fe3	0.0276(3)	0.0221(2) 0.0232(2)	0.0313(3)	-0.0019(2)	0.0055 (2)	-0.0002(2)
01W	0.0293(13)	0.0232(2)	0.0527(3)	0.0001 (2)	0.0079(12)	0.0002(2)
02W	0.0293(13) 0.0598(18)	0.0330(15) 0.0415(16)	0.0512(10) 0.0590(19)	-0.0159(14)	-0.0129(15)	-0.0030(14)
03W	0.0336(15)	0.0338(14)	0.0370(17) 0.0472(15)	-0.0071(12)	0.0129(13)	-0.0110(12)
01	0.0332(14)	0.0338(13)	0.090(2)	0.00071(12)	0.0072 (14)	-0.0050(14)
02	0.0352(14) 0.0375(14)	0.0235(12)	0.050(2)	0.0000(12)	-0.0072(14)	-0.0014(11)
03	0.0375(14) 0.0430(15)	0.0253(12) 0.0563(16)	0.0306(13)	-0.0180(13)	0.0025(12)	0.0014(11)
04	0.0430(13) 0.0425(14)	0.0368(13)	0.0300(13) 0.0333(13)	-0.0113(12)	0.0012(12)	-0.0004(11)
05	0.0425(11)	0.0337(13)	0.0355(15)	-0.0096 (12	0.0077(12)	0.0040 (11)
06	0.0565 (16)	0.0337(13) 0.0293(14)	0.0530(14)	-0.0106(12)	0.0077(12)	0.0040(11) 0.0000(12)
07	0.0303(10) 0.0382(14)	0.0275(14)	0.0390(10)	0.0067 (12)	-0.00225(13)	-0.0032(12)
08	0.0302(14) 0.0323(14)	0.0370(14) 0.0413(14)	0.0399(14) 0.0482(16)	0.0007(12)	-0.0028(12)	-0.0032(12)
09	0.0323(14) 0.0410(15)	0.0413(14) 0.0247(13)	0.0432(10) 0.0638(17)	-0.0030(11)	0.0020(12)	0.0002(12)
010	0.0341(14)	0.0217(13)	0.0030(17) 0.0784(19)	-0.0050 (11	0.0201(13)	-0.0003(13)
011	0.0341(14) 0.0411(15)	0.0230(13)	0.076(15)	0.0119 (14)	-0.0061(13)	-0.0085(13)
012	0.0411(13) 0.0355(14)	0.0003(18) 0.0763(19)	0.0370(13) 0.0324(14)	-0.0086(1/	-0.0001(13)	0.0035(13)
013	0.0335(14)	0.0705(11)	0.0324(14) 0.0303(12)	-0.0007(9)	0.0018(12)	-0.0012(14)
017	0.0250(12)	0.0220(11) 0.0492(18)	0.0505(12)	-0.0405(1)	-0.019(2)	0.0004(10)
018	0.0604 (19)	0.0492(18)	0.007(2)	-0.0155 (16	-0.005(18)	0.0000(10)
014	0.0004(19)	0.0947(18)	0.037(2)	-0.0236(18)	-0.0003(18)	0.0070(17) 0.0325(19)
015	0.0485(18)	0.090(2)	0.070(2)	-0.0098(16)	0.0037(10)	0.0323(17)
C1	0.0423(17)	0.089(2)	0.053(1)	0.0098 (10	0.0070(13)	0.0115(17)
	0.030(2)	0.038(2)	0.035(2)	0.0109(17)	0.000(2)	-0.0000(1)
C2 C3	0.054(2)	0.0510(18)	0.0234(10)	-0.006(1)	0.0000 (13)	0.0009 (13)
C4	0.033(2)	0.000(3)	0.031(2)	0.000(2)	0.0001(19)	0.0040(1)
C4	0.0294(19)	0.0318(19)	0.0303(19)	-0.017(2)	0.0027(10) 0.0054(10)	0.0023(10)
C5	0.047(2) 0.0297(19)	0.047(2) 0.0257(19)	0.043(2)	-0.0017(2)	-0.0034(19)	0.0111(19) 0.0085(15)
C0 C7	0.0297(19)	0.0237(17)	0.040(2)	0.0014 (12	-0.0030(10)	0.0083(13)
C8	0.035(2)	0.045(2)	0.034(3)	-0.0030(1)	0.008(2)	0.010(2)
C8	0.0255(18)	0.033(2)	0.035(2)	-0.0016 (10	0.0037(10)	0.0117(17)
C10	0.040(2)	0.032(2)	0.070(3)	-0.0042(1)	0.013(2)	0.010(2)
C11	0.0274(17)	0.0200(18)	0.038(2)	-0.005(2)	-0.008(2)	0.0009(13)
C12	0.034(3)	0.030(2) 0.0230(17)	0.071(2)	-0.005(2)	= 0.0057(17)	0.0055 (16)
016	0.040(2)	0.0230(17) 0.070(2)	0.054(2) 0.0502(10)	-0.002(2)	0.0037(17)	0.0033(10) 0.0040(17)
N1	0.120(3)	0.070(2)	0.0502(19)	-0.002(2)	0.002(2)	-0.0049(17)
C13	0.003(2)	0.045(2)	0.055(2)	0.0036 (15	-0.001(2)	0.0055(18)
C14	0.003(3)	0.000(3)	0.050(5)	0.007(3)	0.001(2)	0.000(2)
014	0.039 (2)	0.042 (2)	0.001 (3)	0.0000 (19)	0.005 (2)	0.001(2)

Geometric parameters (Å, °)

Fe1—O13	1.897 (2)	O12—C12	1.272 (4)
Fe1—O1	1.987 (2)	O17—N1	1.260 (4)
Fe1—O10	1.995 (2)	O18—N1	1.240 (4)
Fe1—O12	2.005 (3)	O14—C14	1.316 (4)
Fe1—O3	2.063 (2)	O14—H14	0.8200
Fe1—O1W	2.104 (2)	O15—C14	1.209 (5)
Fe2—O13	1.900 (2)	C1—C2	1.494 (5)
Fe2—O5	1.985 (2)	C1—H1A	0.9600
Fe2—O7	2.021 (2)	C1—H1B	0.9600
Fe2—O2	2.030 (2)	C1—H1C	0.9600
Fe2—O4	2.030 (2)	C3—C4	1.501 (5)
Fe2—O2W	2.126 (3)	С3—НЗА	0.9600
Fe3—O13	1.916 (2)	С3—НЗВ	0.9600
Fe3—O11	2.011 (3)	С3—НЗС	0.9600
Fe3—O6	2.013 (2)	C5—C6	1.500 (5)
Fe3—O8	2.013 (2)	C5—H5A	0.9600
Fe3—O9	2.017 (2)	С5—Н5В	0.9600
Fe3—O3W	2.048 (2)	С5—Н5С	0.9600
O1W—H1AW	0.815 (9)	С7—С8	1.497 (5)
O1W—H1BW	0.814 (9)	С7—Н7А	0.9600
O2W—H2AW	0.816 (9)	С7—Н7В	0.9600
O2W—H2BW	0.819 (9)	С7—Н7С	0.9600
O3W—H3AW	0.816 (9)	C9—C10	1.497 (5)
O3W—H3BW	0.818 (9)	С9—Н9А	0.9600
O1—C2	1.260 (4)	С9—Н9В	0.9600
O2—C2	1.251 (4)	С9—Н9С	0.9600
O3—C4	1.258 (4)	C11—C12	1.499 (5)
O4—C4	1.260 (4)	C11—H11A	0.9600
O5—C6	1.249 (4)	C11—H11B	0.9600
O6—C6	1.270 (4)	C11—H11C	0.9600
O7—C8	1.254 (4)	O16—N1	1.229 (5)
O8—C8	1.268 (4)	C13—C14	1.475 (6)
O9—C10	1.251 (4)	C13—H13A	0.9600
O10-C10	1.251 (4)	С13—Н13В	0.9600
O11—C12	1.241 (4)	C13—H13C	0.9600
O13—Fe1—O1	95.13 (10)	Fe2—O13—Fe3	119.60 (11)
O13—Fe1—O10	98.80 (9)	C14—O14—H14	109.5
O1—Fe1—O10	165.92 (10)	C2—C1—H1A	109.5
O13—Fe1—O12	94.40 (10)	C2—C1—H1B	109.5
O1—Fe1—O12	88.79 (12)	H1A—C1—H1B	109.5
O10—Fe1—O12	92.13 (11)	C2—C1—H1C	109.5
O13—Fe1—O3	92.81 (9)	H1A—C1—H1C	109.5
O1—Fe1—O3	92.29 (11)	H1B—C1—H1C	109.5
O10—Fe1—O3	85.04 (11)	O2—C2—O1	123.8 (3)
O12—Fe1—O3	172.58 (10)	O2—C2—C1	118.9 (3)
O13—Fe1—O1W	176.56 (9)	O1—C2—C1	117.4 (3)

O1—Fe1—O1W	81.82 (10)	С4—С3—НЗА	109.5
O10—Fe1—O1W	84.19 (9)	С4—С3—Н3В	109.5
O12—Fe1—O1W	87.14 (10)	НЗА—СЗ—НЗВ	109.5
O3—Fe1—O1W	85.75 (10)	C4—C3—H3C	109.5
O13—Fe2—O5	97.45 (9)	НЗА—СЗ—НЗС	109.5
O13—Fe2—O7	94.56 (9)	НЗВ—СЗ—НЗС	109.5
O5—Fe2—O7	90.68 (10)	O3—C4—O4	124.8 (3)
O13—Fe2—O2	94.67 (9)	O3—C4—C3	118.2 (3)
O5—Fe2—O2	87.64 (10)	O4—C4—C3	117.0 (3)
O7—Fe2—O2	170.76 (10)	C6—C5—H5A	109.5
O13—Fe2—O4	94.54 (9)	С6—С5—Н5В	109.5
O5—Fe2—O4	167.95 (10)	H5A—C5—H5B	109.5
O7—Fe2—O4	89.59 (10)	С6—С5—Н5С	109.5
O2—Fe2—O4	90.17 (10)	H5A—C5—H5C	109.5
O13—Fe2—O2W	174.84 (10)	H5B—C5—H5C	109.5
O5—Fe2—O2W	87.69 (11)	O5—C6—O6	124.6 (3)
O7—Fe2—O2W	85.90 (10)	O5—C6—C5	118.9 (3)
O2—Fe2—O2W	84.95 (10)	O6—C6—C5	116.5 (3)
O4—Fe2—O2W	80.32 (10)	С8—С7—Н7А	109.5
O13—Fe3—O11	92.62 (10)	С8—С7—Н7В	109.5
O13—Fe3—O6	96.76 (9)	H7A—C7—H7B	109.5
O11—Fe3—O6	86.74 (11)	С8—С7—Н7С	109.5
O13—Fe3—O8	93.76 (10)	H7A—C7—H7C	109.5
O11—Fe3—O8	173.00 (10)	H7B—C7—H7C	109.5
O6—Fe3—O8	89.64 (11)	07—C8—O8	124.4 (3)
O13—Fe3—O9	94.77 (9)	O7—C8—C7	118.5 (3)
O11—Fe3—O9	91.68 (11)	O8—C8—C7	117.1 (3)
O6—Fe3—O9	168.42 (10)	С10—С9—Н9А	109.5
O8—Fe3—O9	90.67 (10)	С10—С9—Н9В	109.5
O13—Fe3—O3W	177.83 (10)	Н9А—С9—Н9В	109.5
O11—Fe3—O3W	86.91 (10)	С10—С9—Н9С	109.5
O6—Fe3—O3W	85.33 (10)	Н9А—С9—Н9С	109.5
O8—Fe3—O3W	86.82 (10)	Н9В—С9—Н9С	109.5
O9—Fe3—O3W	83.13 (10)	O9—C10—O10	124.3 (3)
Fe1—O1W—H1AW	115.2 (13)	O9—C10—C9	118.1 (3)
Fe1—O1W—H1BW	116 (2)	O10—C10—C9	117.6 (3)
H1AW—O1W—H1BW	111.0 (16)	C12—C11—H11A	109.5
Fe2—O2W—H2AW	126.2 (19)	C12—C11—H11B	109.5
Fe2—O2W—H2BW	112 (3)	H11A—C11—H11B	109.5
H2AW—O2W—H2BW	109.8 (15)	C12—C11—H11C	109.5
Fe3—O3W—H3AW	126.8 (15)	H11A—C11—H11C	109.5
Fe3—O3W—H3BW	117.5 (16)	H11B—C11—H11C	109.5
H3AW—O3W—H3BW	110.7 (16)	O11—C12—O12	125.1 (3)
C2—O1—Fe1	135.3 (2)	O11—C12—C11	117.6 (3)
C2—O2—Fe2	129.6 (2)	O12—C12—C11	117.3 (3)
C4—O3—Fe1	127.6 (2)	O16—N1—O18	122.8 (4)
C4—O4—Fe2	134.9 (2)	O16—N1—O17	119.9 (4)
C6—O5—Fe2	134.0 (2)	O18—N1—O17	117.2 (4)
C6—O6—Fe3	132.3 (2)	C14—C13—H13A	109.5

supplementary materials

C8—O7—Fe2	132.1 (2)	C14—C13—H13B		109.5
C8—O8—Fe3	134.2 (2)	H13A—C13—H13B		109.5
C10—O9—Fe3	135.5 (2)	C14—C13—H13C		109.5
C10-010-Fe1	131.6 (2)	H13A—C13—H13C		109.5
C12-O11-Fe3	134.2 (2)	H13B—C13—H13C		109.5
C12-O12-Fe1	130.9 (2)	O15—C14—O14		121.4 (4)
Fe1—O13—Fe2	120.78 (11)	O15—C14—C13		124.1 (4)
Fe1—O13—Fe3	119.60 (11)	O14—C14—C13		114.5 (4)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O14—H14···O17 ⁱ	0.82	1.82	2.642 (4)	178
O3W—H3AW…O15 ⁱⁱ	0.816 (9)	1.894 (9)	2.697 (4)	168 (2)
O1W—H1AW…O18 ⁱⁱⁱ	0.815 (9)	2.008 (10)	2.821 (4)	176 (2)
O3W—H3BW…O17 ^{iv}	0.818 (9)	1.938 (13)	2.742 (4)	167 (3)
O2W—H2AW···O15 ^v	0.816 (9)	2.28 (2)	2.904 (4)	134 (2)
O1W—H1BW····O3 ^{vi}	0.814 (9)	2.188 (12)	2.948 (3)	155 (2)
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+2$; $-z+1$.	(ii) <i>x</i> -1, <i>y</i> , <i>z</i> ; (iii) - <i>x</i> +1, <i>y</i>	+1/2, -z+3/2; (iv) $x, y+1, z;$	(v) $x - 1$, $-y + 3/2$	2, $z-1/2$; (vi) $-x+1$, $-y+2$,

Fig. 2

